metabelian, supersoluble, monomial
Aliases: C62⋊4Q8, C62.124C23, C23.36S32, (C2×C6)⋊4Dic6, C6.75(S3×D4), C3⋊Dic3.62D4, C6.27(C2×Dic6), (C22×C6).82D6, (C2×Dic3).48D6, C62.C22⋊6C2, C6.D4.4S3, Dic3⋊Dic3⋊11C2, C2.34(Dic3⋊D6), C6.71(D4⋊2S3), C32⋊15(C22⋊Q8), C22⋊3(C32⋊2Q8), (C2×C62).43C22, C3⋊4(Dic3.D4), C2.19(D6.4D6), (C6×Dic3).28C22, (C3×C6).43(C2×Q8), C22.147(C2×S32), (C3×C6).170(C2×D4), (C2×C32⋊2Q8)⋊8C2, C2.9(C2×C32⋊2Q8), (C3×C6).90(C4○D4), (C2×C6).143(C22×S3), (C3×C6.D4).3C2, (C22×C3⋊Dic3).8C2, (C2×C3⋊Dic3).149C22, SmallGroup(288,630)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62⋊4Q8
G = < a,b,c,d | a6=b6=c4=1, d2=c2, ab=ba, cac-1=a-1b3, dad-1=ab3, bc=cb, dbd-1=b-1, dcd-1=c-1 >
Subgroups: 594 in 175 conjugacy classes, 54 normal (18 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C22, C6, C6, C2×C4, Q8, C23, C32, Dic3, C12, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C3×C6, C3×C6, Dic6, C2×Dic3, C2×Dic3, C2×C12, C22×C6, C22×C6, C22⋊Q8, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C62, C62, C62, Dic3⋊C4, C4⋊Dic3, C6.D4, C3×C22⋊C4, C2×Dic6, C22×Dic3, C32⋊2Q8, C6×Dic3, C2×C3⋊Dic3, C2×C3⋊Dic3, C2×C62, Dic3.D4, Dic3⋊Dic3, C62.C22, C3×C6.D4, C2×C32⋊2Q8, C22×C3⋊Dic3, C62⋊4Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, Dic6, C22×S3, C22⋊Q8, S32, C2×Dic6, S3×D4, D4⋊2S3, C32⋊2Q8, C2×S32, Dic3.D4, D6.4D6, C2×C32⋊2Q8, Dic3⋊D6, C62⋊4Q8
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 13 3 15 5 17)(2 14 4 16 6 18)(7 46 9 48 11 44)(8 47 10 43 12 45)(19 25 23 29 21 27)(20 26 24 30 22 28)(31 41 35 39 33 37)(32 42 36 40 34 38)
(1 23 4 30)(2 26 5 19)(3 21 6 28)(7 39 10 34)(8 36 11 41)(9 37 12 32)(13 29 16 22)(14 24 17 25)(15 27 18 20)(31 45 42 48)(33 43 38 46)(35 47 40 44)
(1 31 4 42)(2 40 5 35)(3 33 6 38)(7 20 10 27)(8 25 11 24)(9 22 12 29)(13 37 16 32)(14 36 17 41)(15 39 18 34)(19 44 26 47)(21 46 28 43)(23 48 30 45)
G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,13,3,15,5,17)(2,14,4,16,6,18)(7,46,9,48,11,44)(8,47,10,43,12,45)(19,25,23,29,21,27)(20,26,24,30,22,28)(31,41,35,39,33,37)(32,42,36,40,34,38), (1,23,4,30)(2,26,5,19)(3,21,6,28)(7,39,10,34)(8,36,11,41)(9,37,12,32)(13,29,16,22)(14,24,17,25)(15,27,18,20)(31,45,42,48)(33,43,38,46)(35,47,40,44), (1,31,4,42)(2,40,5,35)(3,33,6,38)(7,20,10,27)(8,25,11,24)(9,22,12,29)(13,37,16,32)(14,36,17,41)(15,39,18,34)(19,44,26,47)(21,46,28,43)(23,48,30,45)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,13,3,15,5,17)(2,14,4,16,6,18)(7,46,9,48,11,44)(8,47,10,43,12,45)(19,25,23,29,21,27)(20,26,24,30,22,28)(31,41,35,39,33,37)(32,42,36,40,34,38), (1,23,4,30)(2,26,5,19)(3,21,6,28)(7,39,10,34)(8,36,11,41)(9,37,12,32)(13,29,16,22)(14,24,17,25)(15,27,18,20)(31,45,42,48)(33,43,38,46)(35,47,40,44), (1,31,4,42)(2,40,5,35)(3,33,6,38)(7,20,10,27)(8,25,11,24)(9,22,12,29)(13,37,16,32)(14,36,17,41)(15,39,18,34)(19,44,26,47)(21,46,28,43)(23,48,30,45) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,13,3,15,5,17),(2,14,4,16,6,18),(7,46,9,48,11,44),(8,47,10,43,12,45),(19,25,23,29,21,27),(20,26,24,30,22,28),(31,41,35,39,33,37),(32,42,36,40,34,38)], [(1,23,4,30),(2,26,5,19),(3,21,6,28),(7,39,10,34),(8,36,11,41),(9,37,12,32),(13,29,16,22),(14,24,17,25),(15,27,18,20),(31,45,42,48),(33,43,38,46),(35,47,40,44)], [(1,31,4,42),(2,40,5,35),(3,33,6,38),(7,20,10,27),(8,25,11,24),(9,22,12,29),(13,37,16,32),(14,36,17,41),(15,39,18,34),(19,44,26,47),(21,46,28,43),(23,48,30,45)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6F | 6G | ··· | 6Q | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | 2 | ··· | 2 | 4 | ··· | 4 | 12 | ··· | 12 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | + | + | - | + | + | - | - | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | Q8 | D6 | D6 | C4○D4 | Dic6 | S32 | S3×D4 | D4⋊2S3 | C32⋊2Q8 | C2×S32 | D6.4D6 | Dic3⋊D6 |
kernel | C62⋊4Q8 | Dic3⋊Dic3 | C62.C22 | C3×C6.D4 | C2×C32⋊2Q8 | C22×C3⋊Dic3 | C6.D4 | C3⋊Dic3 | C62 | C2×Dic3 | C22×C6 | C3×C6 | C2×C6 | C23 | C6 | C6 | C22 | C22 | C2 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 2 | 8 | 1 | 2 | 2 | 2 | 1 | 2 | 2 |
Matrix representation of C62⋊4Q8 ►in GL8(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 9 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,5,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,9,0,0,0,0,0,0,9,10,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12] >;
C62⋊4Q8 in GAP, Magma, Sage, TeX
C_6^2\rtimes_4Q_8
% in TeX
G:=Group("C6^2:4Q8");
// GroupNames label
G:=SmallGroup(288,630);
// by ID
G=gap.SmallGroup(288,630);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,141,64,422,219,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=a^-1*b^3,d*a*d^-1=a*b^3,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations